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Call-By-Push-Value and calf



Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::=

UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::=

FA

1 X × Y

A→ X

ν(X . Y (X ))

Interpreted in SetT, for monad T.
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Semantics of Computation Types

In SetT, an object X has a set UX and a map αX : T(UX )→ UX .

Definition (Free Algebra)

U(FA) = TA

αFA = TTA
µ−→ TA

Definition (Product Algebra)

U(X × Y ) = UX × UY

αX×Y = T(UX × UY )→ T(UX )× T(UY )
αX×αY−−−−−→ UX × UY

Key Idea

Effects “flow over” computation types (accumulating at F types).
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Cost as an Effect

In calf (based on CBPV), costs are annotated via an effect:

Γ ⊢ e : X

Γ ⊢ stepcX (e) : X

Here, monad T = N× (−).

Example (Summing a List)

Cost model: 1 cost per addition.

sum : list(N)→ F(N)

sum [] =

ret(0)

sum (x :: l) =

n← sum l ;

step1(x + n)

5
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Mixed Product

In calf (CBPV with writer monad), we have a “mixed product”:

A⋉ X

Definition (Mixed Product Algebra)

U(A⋉ X ) = A× UX

αA⋉X = N× (A× UX ) ∼= A× (N× UX )
idA×αX−−−−→ A× UX

Lemma

1⋉ X ∼= X
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Abstract Data Types,

Coinductively



Abstract Data Types, Coinductively

Consider an operation signature:

op1 ⇝ A1

...

opn ⇝ An

Work with cofree comonad:

DX ≜ ν(Z . (quit : X )× (op1 : A1 ⋉ Z )× · · · × (opn : An ⋉ Z ))

∼= (quit : X )× (op1 : A1 ⋉ DX )× · · · × (opn : An ⋉ DX )

Here, always let X = F1 ∼= (N, + : N× N→ N).

D ∼= (quit : F1)× (op1 : A1 ⋉ D)× · · · × (opn : An ⋉ D)
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Abstract Data Types, Coinductively

Example (Queue)

enqueue[k : K ]⇝ 1

dequeue⇝ K + 1

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Example (Renting an Apartment)

remain⇝ 1

R ∼= (quit : F1)× (remain : R)
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Object-Oriented Programming

Remark

These coinductive types look like object-oriented programming.

R ∼= (quit : F1)× (remain : R)

Example

Suppose r : R; then:

r .remain.remain.remain.quit : F1.

9
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Amortized Analysis



In many uses of data structures, a sequence of operations, rather

than just a single operation, is performed, and we are interested

in the total time of the sequence, rather than in the times of the

individual operations. —Tarjan
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Amortized Analysis

Renting



Payment Scheme: Daily

R ∼= (quit : F1)× (remain : R)

Daily Payment

daily : R

quit(daily) =

ret(⟨⟩)

remain(daily) =

step$20R (daily)

11
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Payment Scheme: Monthly

R ∼= (quit : F1)× (remain : R)

Monthly Payment

monthly : N<30 → R

quit(monthly d) =

step
Φ(d)
F1 (ret(⟨⟩))

remain(monthly 29) =

step$600R (monthly 0)

remain(monthly d) =

monthly (d + 1)

• d is the day of the month

• Φ(d) = $20d is the money owed for the month so far
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Coinductive Equivalence

Theorem

For all days of the month d , monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13
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Amortizing Full Stays

Definition (Full-Stay Evaluation)

eval : N→ UR → F1

eval 0 r = quit(r)

eval (n + 1) r = eval n (remain r)

Definition (Full-Stay Evaluation Equivalence)

Say r1 ≈ r2 iff for all n,

eval n r1 = eval n r2.

Theorem

For all r1 and r2, r1 = r2 iff r1 ≈ r2.

Proof.

By (⇒) induction on n and (⇐) coinduction on r1 = r2.

14
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Amortized Analysis

Queue



Queue Implementation: Specification

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Specification

spec : list(K )→ Q

quit(spec l) =

ret(⟨⟩)

enqueue(spec l) =

λk . step1Q(spec (l ++ [k]))

dequeue(spec []) =

⟨none, spec []⟩

dequeue(spec (k :: l)) =

⟨some(k), spec l⟩

15
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Queue Implementation: Batched (Amortized)

Batched Queue

batched : list(K )→ list(K )→ Q

quit(batched bl fl) =

step
Φ(bl,fl)
F1 (ret(⟨⟩))

enqueue(batched bl fl) =

λk. batched (k :: bl) fl

dequeue(batched bl []) =

step|bl|(−){
⟨none, batched [] []⟩ rev bl = []

⟨some(k), batched [] fl⟩ rev bl = k :: fl

dequeue(batched bl (k :: fl)) =

⟨some(k), batched bl fl⟩

Here, Φ(bl , fl) = |bl | (how much spec has already paid).
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Coinductive Amortized Analysis

Theorem

For all bl , fl : list(K ),

batched bl fl = step
Φ(bl,fl)
Q (spec (fl ++ rev bl)).

Proof.

By coinduction.
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Amortizing Finite Sequences of Operations

Definition (Sequence of Operations, Free Monad)

P(A) ∼= (ret : A) + (enq : K × P(A)) + (deq : U(K + 1→ F(P(A))))

Definition (Sequence Evaluation)

eval : P(A)→ UQ → A⋉ F1

By induction on the operation sequence P(A).

Definition (Classic Amortized Equivalence)

Say q1 ≈ q2 iff for all A and p : P(A),

eval p q1 = eval p q2.

Theorem (Coinductive vs. Classic Amortized Analysis)

For all q1 and q2, q1 = q2 iff q1 ≈ q2.
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Conclusion



Summary

1. In call-by-push-value, effects propagate through computation types,

including the mixed product in calf.

2. Sequential-use data structures are coinductive/object-oriented

“machines”.

3. Coinductive equivalence pushes cost forward, capturing amortized

analysis.

4. This coincides with the traditional sequence-of-operations

description of amortized analysis!

5. Results are formalized in calf/Agda (renting, batched queues, and

dynamically-resizing arrays).
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Bonus



Coinductive Equivalence

Theorem

For all d , monthly d = stepΦ(d)(daily).

Proof.



Coinductive Equivalence

Theorem

For all d , monthly d = stepΦ(d)(daily).

Proof.
We prove by coinduction, showing:

1. quit(monthly d) = quit(stepΦ(d)(daily))

2. remain(monthly d) = remain(stepΦ(d)(daily))



Coinductive Equivalence

Theorem

For all d , monthly d = stepΦ(d)(daily).

Proof.

quit(daily) = ret(⟨⟩)

quit(monthly d) = step
Φ(d)
F1 (ret(⟨⟩))

We show:

quit(monthly d) = stepΦ(d)(ret(⟨⟩))
= stepΦ(d)(quit(daily))

= quit(stepΦ(d)(daily))



Coinductive Equivalence

Theorem

For all d , monthly d = stepΦ(d)(daily).

Proof.

remain(daily) = step$20R (daily)

remain(monthly 29) = step$600R (monthly 0)

We show:

remain(monthly 29) = step$600(monthly 0)

= step$600(daily) (co-IH)

= stepΦ(29)(step$20(daily))

= stepΦ(29)(remain(daily))

= remain(stepΦ(29)(daily))



Coinductive Equivalence

Theorem

For all d , monthly d = stepΦ(d)(daily).

Proof.

remain(daily) = step$20R (daily)

remain(monthly d) = monthly (d + 1)

We show:

remain(monthly d) = monthly (d + 1)

= stepΦ(d+1)(daily) (co-IH)

= stepΦ(d)(step$20(daily))

= stepΦ(d)(remain(daily))

= remain(stepΦ(d)(daily))
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